Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Galaxy clusters are the products of structure formation through myriad physical processes that affect their growth and evolution throughout cosmic history. As a result, the matter distribution within galaxy clusters, or their shape, is influenced by cosmology and astrophysical processes, in particular the accretion of new material due to gravity. We introduce an analysis method for investigating the three-dimensional triaxial shapes of galaxy clusters from the Cluster HEritage project with -- Mass Assembly and Thermodynamics at the Endpoint of structure formation (CHEX-MATE). In this paper, the first in a CHEX-MATE triaxial analysis series, we focus on utilizing X-ray data from and Sunyaev-Zel'dovich (SZ) effect maps from and the Atacama Cosmology Telescope to obtain a three-dimensional triaxial description of the intracluster medium (ICM) gas. We present the forward modeling formalism of our technique, which projects a triaxial ellipsoidal model for the gas density and pressure, to be compared directly with the observed two-dimensional distributions in X-rays and the SZ effect. A Markov chain Monte Carlo is used to estimate the posterior distributions of the model parameters. Using mock X-ray and SZ observations of a smooth model, we demonstrate that the method can reliably recover the true parameter values. In addition, we applied the analysis to reconstruct the gas shape from the observed data of one CHEX-MATE galaxy cluster, PSZ2 G313.33+61.13 (Abell 1689), to illustrate the technique. The inferred parameters are in agreement with previous analyses for the cluster, and our results indicate that the geometrical properties, including the axial ratios of the ICM distribution, are constrained to within a few percent. With a much better precision than previous studies, we thus further establish that Abell 1689 is significantly elongated along the line of sight, resulting in its exceptional gravitational lensing properties.
Galaxy clusters are the products of structure formation through myriad physical processes that affect their growth and evolution throughout cosmic history. As a result, the matter distribution within galaxy clusters, or their shape, is influenced by cosmology and astrophysical processes, in particular the accretion of new material due to gravity. We introduce an analysis method for investigating the three-dimensional triaxial shapes of galaxy clusters from the Cluster HEritage project with -- Mass Assembly and Thermodynamics at the Endpoint of structure formation (CHEX-MATE). In this paper, the first in a CHEX-MATE triaxial analysis series, we focus on utilizing X-ray data from and Sunyaev-Zel'dovich (SZ) effect maps from and the Atacama Cosmology Telescope to obtain a three-dimensional triaxial description of the intracluster medium (ICM) gas. We present the forward modeling formalism of our technique, which projects a triaxial ellipsoidal model for the gas density and pressure, to be compared directly with the observed two-dimensional distributions in X-rays and the SZ effect. A Markov chain Monte Carlo is used to estimate the posterior distributions of the model parameters. Using mock X-ray and SZ observations of a smooth model, we demonstrate that the method can reliably recover the true parameter values. In addition, we applied the analysis to reconstruct the gas shape from the observed data of one CHEX-MATE galaxy cluster, PSZ2 G313.33+61.13 (Abell 1689), to illustrate the technique. The inferred parameters are in agreement with previous analyses for the cluster, and our results indicate that the geometrical properties, including the axial ratios of the ICM distribution, are constrained to within a few percent. With a much better precision than previous studies, we thus further establish that Abell 1689 is significantly elongated along the line of sight, resulting in its exceptional gravitational lensing properties.
In this article, we focus on the complex relationship between the shape of dark matter (DM) halos and the cosmological models underlying their formation. We have used three realistic cosmological models from the DEUS numerical simulation project. These three models have very distinct cosmological parameters (Ωm, σ8, and w) but their cosmic matter fields beyond the scale of DM halos are quasi-indistinguishable, providing an exemplary framework to examine the cosmological dependence of DM halo morphology. First, we developed a robust method for measuring the halo shapes detected in numerical simulations. This method avoids numerical artifacts on DM halo shape measurements, induced by the presence of substructures depending on the numerical resolution or by any spherical prior that does not respect the triaxiality of DM halos. We then obtain a marked dependence of the halo’s shape both on their mass and the cosmological model underlying their formation. As it is well known, the more massive the DM halo, the less spherical it is and we find that the higher the σ8 of the cosmological model, the more spherical the DM halos. Then, by reexpressing the properties of the shape of the halos in terms of the nonlinear fluctuations of the total cosmic matter field or only of the cosmic matter field which is internal to the halos, we managed to make the cosmological dependence disappear completely. This new fundamental cosmological invariance is a direct consequence of the nonlinear dynamics of the cosmic matter field. As the universe evolves, the nonlinear fluctuations of the cosmic field increase, driving the dense matter halos toward sphericity. The deviation from sphericity, measured by the prolaticity, triaxiality, and ellipticity of the DM halos, is therefore entirely encapsulated in the nonlinear power spectrum of the cosmic field. From this fundamental invariant relation, we retrieve with remarkable accuracy the root-mean-square of the nonlinear fluctuations and, consequently, the power spectrum of the cosmic matter field in which the halos formed. We also recover the σ8 amplitude of the cosmological model that governs the cosmic matter field at the origin of the DM halos. Our results therefore highlight, not only the nuanced relationship between DM halo formation and the underlying cosmology but also the potential of DM halo shape analysis of being a powerful tool for probing the nonlinear dynamics of the cosmic matter field.
We present the strong lensing analysis of two galaxy clusters: MACS J0242.5-2132 (MACS J0242, z = 0.313) and MACS J0949.8+1708 (MACS J0949, z = 0.383). Their total matter distributions are constrained thanks to the powerful combination of observations with the Hubble Space Telescope and the MUSE instrument. Using these observations, we precisely measure the redshift of six multiple image systems in MACS J0242, and two in MACS J0949. We also include four multiple image systems in the latter cluster identified in HST imaging without MUSE redshift measurements. For each cluster, our best-fit mass model consists of a single cluster-scale halo, and 57 (170) galaxy-scale halos for MACS J0242 (MACS J0949). Multiple images positions are predicted with a rms 0.39″and 0.15″for MACS J0242 and MACS J0949 models respectively. From these mass models, we derive aperture masses of M(R <200 kpc$) = 1.67_{-0.05}^{+0.03}\times 10^{14}M_{\odot }$, and M(R <200 kpc$) = 2.00_{-0.20}^{+0.05}\times 10^{14}M_{\odot }$. Combining our analysis with X-ray observations from the XMM-Newton Observatory, we show that MACS J0242 appears to be a relatively relaxed cluster, while conversely, MACS J0949 shows a relaxing post-merger state. At 200 kpc, X-ray observations suggest the hot gas fraction to be respectively $f_g = 0.115^{+0.003}_{-0.004}$ and $0.053^{+0.007}_{-0.006}$ for MACS J0242 and MACS J0949. MACS J0242 being relaxed, its density profile is very well fitted by a NFW distribution, in agreement with X-ray observations. Finally, the strong lensing analysis of MACS J0949 suggests a flat dark matter density distribution in the core, between 10 and 100 kpc. This appears consistent with X-ray observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.