Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Because host kinases are key regulators of multiple signaling pathways in response to viral infections, we previously screened a kinase inhibitor library using rhabdomyosarcoma cells and human intestinal organoids in parallel to identify potent inhibitors against EV-A71 infection. We found that Rho-associated coiled-coil-containing protein kinase (Rock) inhibitor efficiently suppressed the EV-A71 replication and further revealed Rock1 as a novel EV-A71 host factor. In this study, subsequent analysis found that a variety of vascular endothelial growth factor receptor (VEGFR) inhibitors also had potent antiviral effects. Among the hits, Pazopanib, with a selectivity index as high as 254, which was even higher than that of Pirodavir, a potent broad-spectrum picornavirus inhibitor targeting viral capsid protein VP1, was selected for further analysis. We demonstrated that Pazopanib not only efficiently suppressed the replication of EV-A71 in a dose-dependent manner, but also exhibited broad-spectrum anti-enterovirus activity. Mechanistically, Pazopanib probably induces alterations in host cells, thereby impeding viral genome replication and transcription. Notably, VEGFR2 knockdown and overexpression suppressed and facilitated EV-A71 replication, respectively, indicating that VEGFR2 is a novel host dependency factor for EV-A71 replication. Transcriptome analysis further proved that VEGFR2 potentially plays a crucial role in combating EV-A71 infection through the TSAd-Src-PI3K-Akt pathway. These findings expand the range of potential antiviral candidates of anti-enterovirus therapeutics and suggest that VEGFR2 may be a key host factor involved in EV-A71 replication, making it a potential target for the development of anti-enterovirus therapeutics. IMPORTANCE As the first clinical case was identified in the United States, EV-A71, a significant neurotropic enterovirus, has been a common cause of hand, foot, and mouth disease (HFMD) in infants and young children. Developing an effective antiviral agent for EV-A71 and other human enteroviruses is crucial, as these viral pathogens consistently cause outbreaks in humans. In this study, we demonstrated that multiple inhibitors against VEGFRs effectively reduced EV-A71 replication, with Pazopanib emerging as the top candidate. Furthermore, Pazopanib also attenuated the replication of other enteroviruses, including CVA10, CVB1, EV-D70, and HRV-A, displaying broad-spectrum anti-enterovirus activity. Given that Pazopanib targets various VEGFRs, we narrowed the focus to VEGFR2 using knockdown and overexpression experiments. Transcriptomic analysis suggests that Pazopanib's potential downstream targets involve the TSAd-Src-PI3K-Akt pathway. Our work may contribute to identifying targets for antiviral inhibitors and advancing treatments for human enterovirus infections.
Because host kinases are key regulators of multiple signaling pathways in response to viral infections, we previously screened a kinase inhibitor library using rhabdomyosarcoma cells and human intestinal organoids in parallel to identify potent inhibitors against EV-A71 infection. We found that Rho-associated coiled-coil-containing protein kinase (Rock) inhibitor efficiently suppressed the EV-A71 replication and further revealed Rock1 as a novel EV-A71 host factor. In this study, subsequent analysis found that a variety of vascular endothelial growth factor receptor (VEGFR) inhibitors also had potent antiviral effects. Among the hits, Pazopanib, with a selectivity index as high as 254, which was even higher than that of Pirodavir, a potent broad-spectrum picornavirus inhibitor targeting viral capsid protein VP1, was selected for further analysis. We demonstrated that Pazopanib not only efficiently suppressed the replication of EV-A71 in a dose-dependent manner, but also exhibited broad-spectrum anti-enterovirus activity. Mechanistically, Pazopanib probably induces alterations in host cells, thereby impeding viral genome replication and transcription. Notably, VEGFR2 knockdown and overexpression suppressed and facilitated EV-A71 replication, respectively, indicating that VEGFR2 is a novel host dependency factor for EV-A71 replication. Transcriptome analysis further proved that VEGFR2 potentially plays a crucial role in combating EV-A71 infection through the TSAd-Src-PI3K-Akt pathway. These findings expand the range of potential antiviral candidates of anti-enterovirus therapeutics and suggest that VEGFR2 may be a key host factor involved in EV-A71 replication, making it a potential target for the development of anti-enterovirus therapeutics. IMPORTANCE As the first clinical case was identified in the United States, EV-A71, a significant neurotropic enterovirus, has been a common cause of hand, foot, and mouth disease (HFMD) in infants and young children. Developing an effective antiviral agent for EV-A71 and other human enteroviruses is crucial, as these viral pathogens consistently cause outbreaks in humans. In this study, we demonstrated that multiple inhibitors against VEGFRs effectively reduced EV-A71 replication, with Pazopanib emerging as the top candidate. Furthermore, Pazopanib also attenuated the replication of other enteroviruses, including CVA10, CVB1, EV-D70, and HRV-A, displaying broad-spectrum anti-enterovirus activity. Given that Pazopanib targets various VEGFRs, we narrowed the focus to VEGFR2 using knockdown and overexpression experiments. Transcriptomic analysis suggests that Pazopanib's potential downstream targets involve the TSAd-Src-PI3K-Akt pathway. Our work may contribute to identifying targets for antiviral inhibitors and advancing treatments for human enterovirus infections.
Ubiquitin modification of viral proteins to degrade or regulate their function is one of the strategies of the host to resist viral infection. Here, we report that ubiquitin protein ligase E3C (UBE3C), an E3 ubiquitin ligase, displayed inhibitory effects on EV-A71 replication. UBE3C knockdown resulted in increased viral protein levels and virus titers, whereas overexpression of UBE3C reduced EV-A71 replication. To explore the mechanism by which UBE3C affected EV-A71 infection, we found that the C-terminal of UBE3C bound to 2C protein and facilitated K33/K48-linked ubiquitination degradation of 2C K268. Moreover, UBE3C lost its ability to degrade 2C K268R and had a diminished inhibitory impact against the replication of recombinant EV-A71-FY-2C K268R. In addition, UBE3C also promoted ubiquitination degradation of the 2C protein of CVB3 and CVA16 and inhibited viral replication. Thus, our findings reveal a novel mechanism that UBE3C acts as an enterovirus host restriction factor, including EV-A71, by targeting the 2C protein. IMPORTANCE The highly conserved 2C protein of EV-A71 is a multifunctional protein and plays a key role in the replication cycle. In this study, we demonstrated for the first time that UBE3C promoted the degradation of 2C K268 via K33/K48-linked ubiquitination, thereby inhibiting viral proliferation. Our findings advance the knowledge related to the roles of 2C in EV-A71 virulence and the ubiquitination pathway in the host restriction of EV-A71 infection.
Background Metastatic breast cancer is a challenge in clinical, and the frequent occurrence of concurrent infections in patients is a direct cause of patient death. However, there is no effective treatment to improve the survival rate and extend the survival period. Here we propose a dual target strategy to treat the cancer and concurrent candidiasis. Since hemiprotonic dimers generally have high biological activity, a chemical called hemiprotonic phenoline-phenoline+ (ph-ph+) was used in the study to explore the feasibility of dual target effect of anticancer and antifungus. Methods The metastasis of breast cancer cells were detected by transwell migration and invasion assay, as well as cell scratch assay. The fungicidal effect of ph-ph+ was evaluated by MIC and MFC. The targets were identified by pPLAGL2 transfection and caseinolytic peptidase P (CLpP) activity determination. The animal model of experimental metastatic breast cancer combined with candidiasis was prepared to prove the anticancer and antifungal effect. Results The results showed that ph-ph+ could suppress the proliferation and metastasis of breast cancer cells, and meanwhile kill Candida albicans (C. albicans) effectively. The mechanism of antifungus and anticancer of ph-ph+ was associated with the activation of an evolutionarily conserved protease CLpP. Also, ph-ph+ could inhibit the signaling pathway mediated by PLAGL2 that highly expressed in cancer cells, thereby participating in preventing cell metastasis and inducing apoptosis. In experimental animal model, ph-ph+ retarded the growth and metastasis of the cancer cells, and eliminate C. albicans in tissues at the same time. Conclusions The result suggests that CLpP and PLAGL2 as dual targets could be an potential approach against metastatic cancer and pathogenic fungus, and identifies the effectiveness of ph-ph+ as the dual target inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.