Tribological analysis of laser deposited SS316L/Co27Cr6Mo functionally graded materials using adaptive neuro-fuzzy inference system
Pratapa Reddy Yakkaluri,
Lakshmi Narayana Kavuluru,
Kedar Mallik Mantrala
Abstract:Image processing, power engineering, robotics, industrial automation etc., have all found successful uses for artificial intelligence (AI) techniques such as artificial neural networks (ANN) and neuro-fuzzy logic (FL). In this study, an adaptive neuro-fuzzy inference system (ANFIS) modelling of machine learning (ML) has been implemented to estimate the tribological properties of functionally graded materials (FGM). These FGMs were developed using a direct energy deposition (DED) technique of additive manufactu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.