Both glass fiber (GF) and molybdenum disulfide (MoS2) can enhance the comprehensive properties of PTFE (polytetrafluoroethylene)-based composites, however the properties of the composites are significantly influenced by the molding pressure utilized. In this study, GF/MoS2/PTFE composites were produced under varied molding pressures (50–70 MPa), and the composites’ mechanical and tribological properties were evaluated. The results showed that the tribological parameters (such as friction coefficient and volumetric wear rate) and mechanical parameters (such as density, hardness, tensile strength, and elongation at break) varied depending on the molding pressure. When the molding pressure was 50 MPa, the GF/MoS2/PTFE composites displayed their finest mechanical properties. The composite had the best wear resistance with the lowest wear rate of only of 2.135 × 10−6 mm3/Nm at a molding pressure of 60 MPa and the lowest friction coefficient of 0.166 at a molding pressure of 70 MPa. The increased molding pressure that was employed to make the samples, as predicted by SEM analysis, would lead to greater residual stresses inside the specimens, which would ultimately result in cracking and peeling. In the friction test, specimens with a lower forming pressure are more likely to have surface furrows that are deeper and wider, as well as to shed their filler. Due to the increased molding pressure, the depth of furrows and filler shedding on the composite surface are also more apparent.