In this article, the tribological behaviors of CuPb24Sn under different load and oil lubrication conditions were studied. The worn surface, material transfer, and debris of the material were analyzed by the scanning electron microscopy and energy-dispersive X-ray spectrometer. In addition, the wear rate of CuPb24Sn was measured by means of a laser microscopic 3D and profile measurement apparatus. The results show that the soft phase lead wears preferentially from the sample surface under both light and heavy load conditions. Under the light load condition, the wear rate of the soft phase lead is low. Therefore, in this condition the samples are lubricated by oil and surface residual lead, and the wear mechanism is mainly abrasive wear. However, under heavy load conditions, the soft phase lead is quickly consumed. The lubricating oil film is thinner and the asperities contact is increased. And then the surface temperature and oxidation of samples are increased too. In this case, the main wear mechanisms of samples are adhesive wear and oxidation wear. At the same time, with the depletion of lead, cracks begin to form and propagate at the interface between lead and copper, and then peel off from the matrix to form wear debris, which further accelerates the wear of the sample.