Metallic glasses are relatively new materials with a large potential for applications in various technical and biomedical fields. However, for efficient use of these novel materials with an interesting combination of properties, it is necessary to fully characterize them for their mechanical and electrochemical properties. Studies on the effects of chemical parameters (pH, temperature, concentration of reagent) and tribological parameters (load, sliding speed, counterbody, contact configuration) on the kinetics of the reaction (i.e., the material removal rate) supply information on the dominant mechanisms governing the tribo-electrochemical behavior of metallic glasses. Although considerable efforts have been made to characterize their mechanical, corrosion, and magnetic properties, the study of their tribocorrosion patterns is in a rather unsatisfactory state, and very limited information is available. It is the purpose of this chapter to provide an overview of basic information on the tribo-electrochemical properties of most metallic glasses. This becomes crucial when such materials are to be considered in systems where solid surfaces are prone to mechano-chemical transformation processes.