This paper investigates the use of rice straw powder in a brake pad as a substitute for asbestos which is a carcinogenic with detrimental effects on health. Rice straw powder was used as a novel material in a brake pad. Rice straw powder has a silica content which gives the pad a c eramic-like action. Rice straws were ground after drying in order to produce the powder. Five laboratory varieties were produced, altering the rice straw powder ingredients from 5, 10, 15, 20 and 25 wt.-%, respectively added to other abrasive materials, binder, friction modifiers, solid lubricant, and filler material utilizing conventional techniques. In this study, the friction surface temperature, the wear amount, and the change of the friction coefficient were determined. Additionally, the microstructure specifications of the brake pads were determined using scanning electron microscopy. Experimental results showed that a 15 wt.-% fraction of rice straw powder yielded better wear and thermo-mechanical features as compared with other combinations. The micro-structure shows a uniform distribution of the rice straw powder in the matrix. Hence, rice straw powder can be a possible candidate friction material for producing non-asbestos new brake pad without any detrimental impact.