In this paper, a new tridiagonal matrix, whose eigenvalues are the same as the Sylvester-Kac matrix of the same order, is provided. The interest of this matrix relies also in that the spectrum of a principal submatrix is also of a Sylvester-Kac matrix given rise to an interesting spectral interlacing property. It is proved alternatively that the initial matrix is similar to the Sylvester-Kac matrix.