The molecular structure and conformational and rotational composition of 3,7,9-tris(trifluoromethylsulfonyl)-3,7,9-triazabicyclo[3.3.1]nonane 1 have been investigated by synchronous gas-phase electron diffraction/mass spectrometry GED/MS and theoretical calculations (B3LYP and M06-2X with cc-pVTZ and aug-cc-pVTZ basis sets) and compared to the X-ray structure. All 16 possible conformers and rotamers were calculated, differing by the conformations of the two piperazine rings, orientation of the CF3 groups relative to these rings, and non-equivalence of the two wings of the butterfly structure. The optimized geometry of the most stable 1-c-out-2-c-out conformer coincides with that in the crystal. In contrast to only one conformer determined by X-ray, the GED analysis revealed the presence of five conformers, 1-c-out-2-c-out (I), 1-c-in-2-c-out (II), 1-c-out-2-c-in (III), 1-b-out-2-c-out (IV), 1-c-out-2-b-out (V) in the ratio of I:(II + III):IV:V = 36(10):42(6):22(10):0(10). The experimental results are better reproduced by calculations performed for 428 K (the temperature of the GED experiment) than for 298 K (standard), and most satisfactorily at the M06-2X/aug-cc-pVTZ level of theory.