The skull base is a complex anatomical region that harbors many important neurovascular structures in a relatively confined space. The pathology that can develop at this site is varied, and many disease processes may present with similar clinical and neuroimaging findings. While computed tomography maintains a role in the evaluation of many entities and can, for instance, delineate osseous erosion with great detail and characterize calcified tumor matrices, magnetic resonance imaging (MRI) is the mainstay in the neuroimaging assessment of most pathology occurring at the skull base. Various MRI sequences have proven to be robust tools for tissue characterization and can provide information on the presence of lipids, paramagnetic and diamagnetic elements, and tumor cellularity, among others. In addition, currently available MRI techniques are able to generate high spatial resolution images that allow visualization of cranial nerves and their involvement by adjacent pathology. The information obtained from such examinations may aid in the distinction of these disease processes and in the accurate delineation of their extent prior to biopsy or treatment planning.