Limited therapeutic efficacy to hypoxic and refractory solid tumors has hindered the practical application of photodynamic therapy(PDT). Tw on ew benzothiophenylisoquinoline (btiq)-derived cyclometalated Ir III complexes, IrL1 and MitoIrL2,w ere constructed as potent photosensitizers, with the latter being designed for mitochondria accumulation. Both complexes demonstrated at ype IP DT process and caused photoinduced ferroptosis in tumor cells under hypoxia. This ferroptosis featured lipid peroxide accumulation, mitochondria shrinkage,d own-regulation of glutathione peroxidase 4(GPX4), and ferrostatin-1 (Fer-1)-inhibited cell death. Upon photoirradiation under hypoxia, mitochondria targeting MitoIrL2 caused mitochondria membrane potential (MMP) collapse,A TP production suppression, and induced cell apoptosis.T he synergetic effect of ferroptosis and apoptosis causes MitoIrL2 to outperform IrL1 in inhibiting the growth of MCF-7, PANC-1, MDA-MB-231 cells and multicellular spheroids.T his study demonstrates the first example of ferroptosis induced by photosensitizing Ir III complexes.Moreover,t he synergism of ferroptosis and apoptosis provides ap romising approach for combating hypoxics olid tumors through type IP DT processes.