Aims Lipid accumulation product (LAP) is put forward as a powerful marker showing the accumulation of visceral fat. The present study is aimed at (i) analyzing the predictive performances of LAP in the identification of impaired fasting glucose (IFG) in Chinese population and (ii) exploring the potentially interactive effect between LAP and other factors on IFG risk. Methods Analysis was conducted on the data obtained from a community-based cross-sectional survey in Chinese population, and all the participants enrolled were required to complete a face-to-face questionnaire survey and related health checks. Then, for the purpose of comparing predictive values between LAP and conventional obesity indices for IFG, relevant analysis was carried out on the receiver operating characteristic (ROC) curve. The assessment of interactive effects was conducted by employing the three indicators as follows: (1) RERI (the relative excess risk due to interaction), (2) AP (attributable proportion due to interaction), and (3) SI (synergy index). Results A total of 1777 participants (748 males and 1029 females) were involved in the final analysis. It was finally obtained that the prevalence rate of IFG was 14.1% in total, 15.5% for males and 13.1% for females, respectively. In logistic regression analysis, individuals with LAP levels in the fourth quartile had a significant higher risk of getting IFG in comparison with that of the lowest quartile (crude OR: 4.58, 95% CI: 3.01-6.98; adjusted OR: 3.81, 95% CI: 2.33-6.23). In addition, it was indicated by the ROC curve analysis that LAP showed a better performance in discriminating IFG risk than BMI in both males (Z = 2.20, P = 0.028) and females (Z = 2.13, P = 0.033). However, LAP displayed a higher predictability in comparison with WC only in females (Z = 2.07, P = 0.038), but not in males (Z = 0.18, P = 0.860). Furthermore, LAP and family history of diabetes were able to impose significant synergistic interaction on the risk of IFG, which was indicated by all the parameters in females (RERI: 2.52, 95% CI: 0.19-4.84; AP: 0.47, 95% CI: 0.20-0.74; SI: 2.39, 95% CI: 1.17-4.87) and males (RERI: 2.18, 95% CI: 0.08-4.73; AP: 0.43, 95% CI: 0.07-0.79; SI: 2.15, 95% CI: 1.03-5.45). However, none of the indicators showed significant interaction between LAP and smoking on the risk of IFG in females (RERI: 0.92, 95% CI: -2.79-4.63; AP: 0.20, 95% CI: -0.50-0.92; SI: 1.37, 95% CI: 0.42-4.52). Meanwhile, there was also no significant interaction between LAP and smoking on the risk of IFG in males as indicated by the value of SI (2.22, 95% CI: 0.80-6.21). Conclusion It was concluded that LAP was significantly related to a higher risk of IFG in Chinese population, and its performance was superior to that of conventional obesity indices, especially in females. Apart from that, LAP with family history of diabetes may have an interactive effect that can impose a great influence on the development of IFG.