2007
DOI: 10.1017/s0025557200181550
|View full text |Cite
|
Sign up to set email alerts
|

Trigonometry and Fibonacci numbers

Abstract: This article sets out to explore some of the connections between two seemingly distinct mathematical objects: trigonometric functions and the integer sequences composed of the Fibonacci and Lucas numbers. It establishes that elements of Fibonacci/Lucas sequences obey identities that are closely related to traditional trigonometric identities. It then exploits this relationship by converting existing trigonometric results into corresponding Fibonacci/Lucas results. Along the way it uses mathematical tools that … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
9
0
2

Year Published

2011
2011
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(11 citation statements)
references
References 0 publications
0
9
0
2
Order By: Relevance
“…S. Di DOMENICO There have been a number of articles on the relation between the terms of the Fibonacci and Lucas sequences and how they are closely related to trigonometric and hyperbolic functions and their properties [1]. S. Di DOMENICO There have been a number of articles on the relation between the terms of the Fibonacci and Lucas sequences and how they are closely related to trigonometric and hyperbolic functions and their properties [1].…”
Section: Integer Sequences That Behave As Fibonacci-lucas Pairsmentioning
confidence: 99%
See 2 more Smart Citations
“…S. Di DOMENICO There have been a number of articles on the relation between the terms of the Fibonacci and Lucas sequences and how they are closely related to trigonometric and hyperbolic functions and their properties [1]. S. Di DOMENICO There have been a number of articles on the relation between the terms of the Fibonacci and Lucas sequences and how they are closely related to trigonometric and hyperbolic functions and their properties [1].…”
Section: Integer Sequences That Behave As Fibonacci-lucas Pairsmentioning
confidence: 99%
“…We begin by writing the recurrence (1) in what appears to be a very contrived way: There are many ways of going about this [1,2,3,4,5] but we give an alternative method.…”
Section: Solving the Fibonacci-lucas Recurrencementioning
confidence: 99%
See 1 more Smart Citation
“…Diversos matemáticos viram nessas fórmulas analogia entre sen a e F n e entre cos a e L n , isto é, a menos dos coeficientes, as fórmulas possuem os mesmos ingredientes. Listas mais extensas de identidades trigonométricas e suas análogas de Fibonacci e de Lucas podem ser vistas em [46,53]. Por exemplo, observe a analogia entre as fórmulas para soma de arcos…”
Section: Números De Fibonacci E De Lucas Números Complexos E Trigonounclassified
“…Uma aplicação mais elaborada tirada de [46], é a obtenção da soma de uma série envolvendo números de Lucas através de uma série telescópica. Consequentemente, fazendo θ = l e usando as relações (3.71), obtém-se Para concluir o uso de números complexos nesta seção, serão mostradas maneiras de se estender a definição dos números de Fibonacci para índices complexos e também apenas para índices reais.…”
Section: Números De Fibonacci E De Lucas Números Complexos E Trigonounclassified