Some applications, such as satellites, require ultralow power and high-radiation resilience. We developed a12Tsoft error-resilient SRAM cell, TA-Quatro, to deliver in-memory computing (IMC) for those applications. Based on our TA-Quatro cell, we implemented an IMC circuit to support binary weights and ternary activations in a single SRAM cell. Our simulation under 28 nm FD-SOI technology demonstrates that the TA-Quatro IMC circuit maintains good IMC stability at a scaled supply of 0.7Vand achieves ternary activation without needing analog-to-digital converters. These advancements significantly enhance the power efficiency of the proposed IMC circuit compared to state-of-the-art works.