An important goal in carbon nanotube optoelectronics is to achieve a high-performance near-infrared light source. But there are still many challenges such as the purity of single-walled carbon nanotube (SWCNT) chirality, nonradiative defects, thin-film quality, and device structure design. Here, we realize infrared light-emitting diodes (LEDs) based on chirality-sorted (10, 5) SWCNT network films, which operate at a low bias voltage and emit at a telecom O band of 1290 nm. Asymmetric palladium (Pd) and hafnium (Hf) contacts are used as electrodes for hole and electron injection, respectively. However, the large Schottky barrier at the interface of the SWCNTs and the Hf electrode, primarily resulting from the polymer wrapped on the nanotube surface during the sorting process, leads to inefficient electron injection and thus a low electroluminescence efficiency. We find that the efficiency of electron injection can be improved by the local doping of the nanotubes with dielectric layers of YO X -HfO 2 , which reduces the Schottky barrier at the SWCNT/Hf interface. Accordingly, the (10, 5) SWCNT film-based LED achieves an external quantum efficiency of larger than 0.05% without any optical coupling structure. With further improvement, we expect that such an infrared light source will have great application potential in the carbon nanotube monolithic optoelectronic integrated system and on-chip optical interconnection, especially in the field of short-distance optical fiber communications and data center.