2021
DOI: 10.1109/access.2021.3083683
|View full text |Cite
|
Sign up to set email alerts
|

Trip Generation Prediction Based on the Convolutional Neural Network-Multidimensional Long-Short Term Memory Neural Network Model at Grid Cell Scale

Abstract: The prediction of trip generation is an essential problem for effective traffic engineering and urban management. Traditional methods are on the large spatial scale (e.g. Traffic analysis Zone, TAZ), based on the single source and fewer types data. It is difficult to carry out refined research on smaller spatial units, due to the high aggregation of personal trip survey data. In addition, the experience-based models cannot easily capture complex non-linear relationship, which leads to lower accuracy. Multi-sou… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 27 publications
0
0
0
Order By: Relevance