Inorganic polyphosphates (polyPs) are linear polymers of orthophosphate units linked by phosphoanhydride bonds. PolyPs represent important stores of phosphate and energy, and are abundantly found in many pro-and eukaryotic organisms. In plants, the existence of polyPs has been established using microscopy and biochemical extraction methods that are now known to produce artifacts. Here we use a polyP-specific dye and a polyP binding domain to detect polyPs in plant and algal cells. To develop the staining protocol, we induced polyP granules in Nicotiana benthamiana and Arabiopsis cells by heterologous expression of E. coli polyphosphate kinase 1 (PPK1). Over-expression of PPK1 but not of a catalytically impaired version of the enzyme lead to severe growth phenotypes, suggesting that ATP-dependent synthesis and accumulation of polyPs in the plant cytosol is toxic. We next crossed stable PPK1 expressing Arabidopsis lines with plants expressing the polyP-binding domain of E. coli exopolyphosphatase (PPX1c), which co-localized with PPK1-generated polyP granules. These granules were stained by the polyP-specific dye JC-D7 and appeared as electron dense structures in transmission electron microscopy (TEM) sections. Using the polyP staining protocol derived from these experiments, we screened for polyP stores in different organs and tissues of both mono-and dicotyledonous plants. While we could not detect polyP granules in higher plants, we could visualize the polyP-rich acidocalicisomes in the green algae Chlamydomonas reinhardtii. Together, our experiments suggest that higher plants may not contain large polyPs stores.
Keywordsinorganic polyphosphate, energy metabolism, polyphosphate kinase, polyphosphate phosphatase,
Arabidopsis, Chlamydomonas
Significance StatementA chemical dye and an inorganic polyphosphate binding domain are shown to specifically label inorganic polyphosphate granules in transgenic Arabidopsis lines and Chlamydomonas acidocalcisomes. Using these tools, we show that in contrast to many prokaryotic and eukaryotic organisms, higher plants do not seem to contain large inorganic polyphosphate stores.