This analysis is interested in the dynamic flow of incompressible triple diffusive fluid flowing through a linear stretched surface. The current study simulates when Boussinesq approximation and MHD are significant. As for originality, a comparative study of all the results for opposing and assisting flow cases is provided. Lie-group transformation is utilized to determine symmetry depletions of partial differential equations. The transformed system of ordinary differential equations is solved using the Runge-Kutta shooting technique. The impacts of magnetic parameter, buoyancy ratio parameter of temperature and concentration, and Lewis number on velocity, temperature, and concentration are depicted through graphs. We observed that the magnetic field parameter decelerates in velocity distribution for both fluid flow cases. Additionally, the same phenomenon was noticed with the buoyancy ratio parameters on both salt concentration distributions. Finally, the influence of heat and mass transfer rates decreases for both fluid flow cases with an increase in Lewis number.