Editorial on the Research TopicRecent Trends in Computational Fluid Dynamics Computational fluid dynamics (CFD) [1] can be described as the set of techniques that assist the computer to provide the numerical simulation of the fluid flows. The three basic principles that can determine the physical aspects of any fluid are the i) energy conservation, ii) Newton's second law, and the iii) mass conservation. These flow problem can be described in terms of these basic laws. Mathematical equations, which are usually in the form of partial differential equations, portrayed the fluid behavior in the flow domain.The solutions and interactive behavior of solid boundaries with fluid or interaction between the layers of the fluid while flowing are visualized using some CFD techniques. CFD helps replace these differential equations of fluid flow into numbers, and these numbers are beneficial in time and/or space which enable a numerical picture of the complete fluid flow. CFD is powerful in examining a system's behavior, beneficial, and more innovative in designing a system [2]. Also, It is efficient in exploring the system's performance metrics, whether it is for the yielding higher profit margins or in enhancing operational safety, and in various advantageous features [3].Nowadays, CFD techniques are usually applied in various fields [4][5][6][7][8] i.e. car design, turbomachinery, ship design, and aircraft manufacturing. Moreover, it is beneficial in astrophysics, biology, oceanography, oil recovery, architecture, and meteorology. Numerous numerical Algorithm and software have been developed to perform CFD analysis. Due to the recent advancement in computer technology, numerical simulation for physically and geometrically complex systems can also be evaluated using PC clusters. Large scale simulations in different fluid flow on grids containing millions and trillions of elements can be achieved within a few hours via supercomputers. However, it is completely incorrect to think that CFD describes a mature technology, there are numerous open questions related to heat transfer, combustion modeling, turbulence, and efficient solution methods or discretization methods, etc. The coupling between CFD and other disciplines required further research, therefore, the main goal of this issue is to fill an essential gap that is greatly missed in this field. We sincerely hope that this issue will be beneficial to the readers to present the recent findings in the field and shed some light on the industrial sector. Rafique et al. [9] used Buongiorno model to discuss the Casson nanofluid boundary layer flow through an inclined surface under the impact of Dufour and Soret. This nonlinear model is beneficial to understand the mechanism of heat and mass transfer by contemplating various essential features of the proposed boundary layer. Further, the Keller-box technique has been used to simulate the results. The results show that the Dufour effect has a strong impact on the temperature profile and