Intricate superstructures possess unusual structural features and promising applications. The preparation of superstructures with single-crystalline nature are conducive to understanding the structure-property relationship, however, remains an intriguing challenge. Herein we put forward a new hierarchical assembly strategy towards rational and precise construction of intricate single-crystal superstructures. Firstly, two unprecedented superclusters in Rubik's cube's form with a size of � 2 × 2 × 2 nm 3 are constructed by aggregation of eight {Pr 4 Sb 12 } oxohalide clusters as secondary building units (SBUs). Then, the Rubik's cubes further act as isolable tertiary building units (TBUs) to assemble diversified single-crystal superstructures. Importantly, intermediate assembly states are captured, which helps illustrate the evolution of TBU-based superstructures and thus provides a profound understanding of the assembly process of superstructures at the atomic level.