To perform energy-dispersive x-ray computed tomography (EDCT), we constructed a computer program to amplify the digital values of raw radiograms. The CT scanner consists of an x-ray generator with a 0.1-mm-focus tube, a turntable, a flat panel detector (FPD), and a personal computer (PC). An object on the turntable is irradiated by the x-ray generator, 1.3-magnified 720 radiograms are taken by the FPD, and tomograms are reconstructed using the PC. Utilizing the digital amplifier, the object projections obtained using low-energy photons disappeared with increasing amplification factor at a constant maximum value, and the effective energy increased according to increases in the amplification factor by beam hardening. Using the beam-hardening CT (BHCT) scanner, high-contrast tomography for various objects was performed by controlling effective energy. In particular, fine blood vessels were observed by K-edge CT using iodine media.