Nasopharyngeal carcinoma (NPC) is an endemic tumor with a relatively high incidence in Southern China and Southeast Asia. Paclitaxel combination chemotherapy has been used for treatment of advanced NPC. However, treatment failure often occurs due to development of acquired paclitaxel resistance. In this study, we first established a paclitaxel-resistant CNE-1/Taxol, HNE-2/Taxol and 5-8F/Taxol cell sublines by treating the parental CNE-1, HNE-2 and 5-8F cells with increasing doses of paclitaxel for about 5 months, respectively. Then, microRNA arrays were used to screen differentially expressed miRNAs between the CNE-1/Taxol cells and the parental CNE-1 cells. We found 13 differentially expressed miRNAs, of which miR-1204 was significantly downregulated in the paclitaxel-resistant CNE-1/Taxol cells. We restored miR-1204 expression in the CNE-1/Taxol, HNE-2/Taxol and 5-8F/Taxol cells and found that restoration of miR-1204 re-sensitized the paclitaxel-resistant CNE-1/Taxol, HNE-2/Taxol and 5-8F/Taxol cells to paclitaxel both in vitro. Finally, we demonstrated that restoration of miR-1204 in significantly inhibits tumor growth in vivo. Thus, our study provides important information for the development of targeted gene therapy for reversing paclitaxel resistance in NPC.