“…-2AK(;, + U(~2 -2/3) + Eaan + 1I2(E bb + Ecc)(2 _ ~2) + (A-B)K2+B[J(J+ 1) -2(K+~)~+2] -DKK4 -DNK [J(J + 1) -2(K + ~)~ + 2]K 2 -DN[(J(J+ 1)2-4~KJ(J+ 1) + (8-6~2)J(J+ 1) -(4 -6~2)K2 -2~K + 4(1 _ ~2)],where and (;, == «(; ILz + Gz 1(;)· Spin-uncoupling(JK,P + 1,~ + 1; ± IH IJKP~; ± ) = -[B-2DN[J(J+ 1) +K-1-2~] -DNKK2 -(Ebb + Ecc )/4] X [2J(J + 1) -2(K + ~)(K + ~ + 1)]112, (JK,P + 2,~ + 2; ± IH IJKP~; ± ) = -2D N [J(J+ 1) -K(K-1)]1I2[J(J+ 1) _ K(K + 1)] 1/2. Elements off-diagonal in K (J, -K + 2, -P+ 2, -~; ± IH'IJKP~; ±) ± (-I)J-K+ Ihl [J(J + 1) -(K + ~ -1)(K + ~ -2)]1/2[J(J + 1) -(K + ~)(K + ~ _1)]1/2, (J, -K + 2, -P+ 1, -~ -1; ± IH'IJKP~; ±) = ± (_l)J-K+ I(EI -2h l ) X [2J(J + 1) -2(K + ~)(K + ~ _1)]112, (J, -K + 2, -P, -~-2; ± IH'IJKP~; ±) = ±(_I)J-K+12(01+h l -E I ), (J, -K -1, -P-l, -~; ± IH'IJKP~; ±) = ± ( -I)J -K [h2 (2K + 1) + 2E2b~] X [J(J + 1) -(K + ~)(K + ~ + 1)]112, (J, -K -1, -P, -~ + 1; ± IH'IJKP~; ± ) ± ( -1)J-K [(E 2a -h2 )(2K + 1) + (02 -E 2b )(2~ -1)](2) 112.…”