Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is an organophosphate flame retardant that impacts zebrafish epiboly – an effect that may be associated with genome-wide hypomethylation. Using zebrafish as a model, the objectives of this study were to (1) quantify concentration-dependent impacts of TDCIPP on epiboly; (2) determine whether co-exposure with folic acid (FA) – a methyl donor – mitigates TDCIPP-induced impacts; and (3) using ten previously identified TDCIPP-susceptible loci, rely on bisulfite amplicon sequencing (BSAS) to monitor CpG methylation dynamics across multiple TDCIPP concentrations in the presence or absence of FA. Embryos were exposed to TDCIPP from 0.75 h post-fertilization (hpf) to 2, 4, 6, or 24 hpf in the presence or absence of 1 mM FA. Although TDCIPP delayed epiboly up to 3 h by 6 hpf and induced malformations by 24 hpf, FA was unable to mitigate TDCIPP-induced effects at all stages evaluated. Moreover, while no differences in global methylation were detected using a 5-methylcytosine (5-mC) DNA ELISA, BSAS revealed that TDCIPP-induced effects on CpG methylation were dependent on concentration and developmental stage, and that early effects on methylation do not persist despite continuous exposure. Our findings demonstrate that TDCIPP delays zebrafish epiboly, a phenotype that is preceded by complex, dynamic alterations in DNA methylation.