The [Ag(3ADMT)(NO3)]n complex was synthesized by the self-assembly of 3-amino-5,6-dimethyl-1,2,4-triazine (3ADMT) and AgNO3. Its molecular structure was analyzed utilizing FTIR spectra, elemental analysis, and single crystal X-ray diffraction (SC-XRD). There is one crystallographically independent Ag atom, which is tetra-coordinated by two nitrogen atoms from two 3ADMT and two oxygen atoms from two nitrate anions where all ligand groups are acting as connectors between the Ag1 sites. The geometry around the Ag(I) center is a distorted tetrahedron with a AgN2O2 coordination sphere augmented by strong argentophilic interactions between Ag atoms, which assist the aggregation of the complex units in a wavy-like and coplanar pattern to form a one-dimensional polymeric chain. The O...H (37.2%) and N...H (18.8%) intermolecular interactions contributed significantly to the molecular packing based on Hirshfeld surface analysis. The [Ag(3ADMT)(NO3)]n complex demonstrates promising cytotoxicity against lung (IC50 = 2.96 ± 0.31 μg/mL) and breast (IC50 = 1.97 ± 0.18 μg/mL) carcinoma. This remarkable cytotoxicity exceeds those of 3ADMT, AgNO3, and the anticancer medication cis-platin towards the tested cancer cell lines. In addition, the complex has a wide-spectrum antimicrobial action where the high antibacterial potency of the [Ag(3ADMT)(NO3)]n complex against P. vulgaris (MIC = 6.1 µg/mL) and B. subtilis (MIC = 17.2 µg/mL) could be comparable to the commonly used drug Gentamycin (MIC = 4.8 µg/mL). These results confirm that the components of the [Ag(3ADMT)(NO3)]n complex work together synergistically, forming a powerful multifunctional agent that could be exploited as an effective antimicrobial and anticancer agent.