The removal or structural disruption of crystallised lipid is a pivotal but energy-intensive step in a wide range of industrial and biological processes. Strategies to disrupt the structure of crystallised lipid in aqueous solution at lower temperatures are much needed, where nanoparticle-based strategies show enormous promise. Using the aqueous tristearin bilayer as a model for crystallised lipid, we demonstrate that the synergistic use of surfactant and detonation nanodiamonds can depress the onset temperature at which disruption of the crystallised lipid structure occurs. Our simulations reveal the molecular-scale mechanisms by which this disruption takes place, indicating that the nanodiamonds serve a dual purpose. First, the nanodiamonds are predicted to facilitate delivery of surfactant to the lipid/water interface, and second, nanodiamond adsorption acts to roughen the lipid/water interface, enhancing ingress of surfactant into the bilayer. We find the balance of the hydrophobic surface area of the nanodiamond and the nanodiamond surface charge density to be a key determinant of the effectiveness of using nanodiamonds to facilitate lipid disruption. For the nanodiamond size considered here, we identify a moderate surface charge density, that ensures the nanodiamonds are neither too hydrophobic nor too hydrophilic, to be optimal.