Abstract:In this paper we study the class numbers in the finite layers of certain non-cyclotomic $\mathbb{Z}$p-extensions of the imaginary quadratic field $\mathbb{Q}(\sqrt{-1})$, for all primes p ≡ 1 modulo 4. By studying the Mahler measure of elliptic units, we are able to show that there are only finitely many primes ℓ congruent to a primitive root modulo p2 that divide any of the class numbers in the $\mathbb{Z}$p-extension.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.