Neurotrophins (NTs) represent a group of growth factors with pleiotropic activities at the central nervous system level. The prototype of these molecules is represented by the nerve growth factor (NGF), but other factors with similar functions have been identified, including the brain derived-growth factor (BDNF), the neurotrophin 3 (NT-3), and NT 4/5. These growth factors act by binding specific low (P75) and high-affinity tyrosine kinase (TrkA, B, and C) receptors. More recently, these growth factors have shown effects outside the nervous system in different organs, particularly in the lungs. These molecules are involved in the natural development of the lungs, and their homeostasis. However, they are also important in different pathological conditions, including lung cancer. The involvement of neurotrophins in lung cancer has been detailed most for non-small cell lung cancer (NSCLC), in particular adenocarcinoma. This review aimed to extensively analyze the current knowledge of NTs and lung cancer and clarify novel molecular mechanisms for diagnostic and therapeutic purposes. Several clinical trials on humans are ongoing using NT receptor antagonists in different cancer cell types for further therapeutic applications. The pharmacological intervention against NT signaling may be essential to directly counteract cancer cell biology, and also indirectly modulate it in an inhibitory way by affecting neurogenesis and/or angiogenesis with potential impacts on tumor growth and progression.