Previous studies have indicated a redundancy in the effects of the cytokines, IL-3, IL-5, and nerve growth factor (NGF) on acute priming of human basophils. In the current study, we have examined the effects of these three cytokines on 18-h priming for leukotriene C4 generation, their ability to induce FcεRIβ mRNA expression, or their ability to sustain basophil viability in culture. We also examine a variety of the signaling steps that accompany activation with these cytokines. In contrast with the ability of IL-3 to alter secretagogue-mediated cytosolic calcium responses following 18-h cultures, 18-h treatment with IL-5 or NGF did not affect C5a-induced leukotriene C4 generation or alter C5a-induced intracellular Ca2+ concentration elevations. IL-3 and IL-5, but not NGF, induced FcεRIβ mRNA expression and all three improved basophil viability in culture with a ranking of IL-3 > IL-5 ≥ NGF. All three cytokines acutely activated the extracellular signal-regulated kinase pathway and the signaling elements that preceded extracellular signal-regulated kinase and cytosolic phospholipase A2 phosphorylation, consistent with their redundant ability to acutely prime basophils. However, only IL-3 and IL-5 induced Janus kinase 2 and STAT5 phosphorylation. This pattern of signal element activation among the three cytokines most closely matched their ability to induce expression of FcεRIβ mRNA. Induction of the sustained calcium signaling that follows overnight priming with IL-3 appeared to be related to the strength of the early signals activated by these cytokines but the relevant pathway required was not identified. None of the signaling patterns matched the ability of the cytokines to promote basophil survival.