Although the genetic code is redundant, synonymous codons for the same amino acid are not used with equal frequencies in genomes, a phenomenon termed "codon usage bias." Previous studies have demonstrated that synonymous changes in a coding sequence can exert significant cis effects on the gene's expression level. However, whether the codon composition of a gene can also affect the translation efficiency of other genes has not been thoroughly explored. To study how codon usage bias influences the cellular economy of translation, we massively converted abundant codons to their rare synonymous counterpart in several highly expressed genes in Escherichia coli. This perturbation reduces both the cellular fitness and the translation efficiency of genes that have high initiation rates and are naturally enriched with the manipulated codon, in agreement with theoretical predictions. Interestingly, we could alleviate the observed phenotypes by increasing the supply of the tRNA for the highly demanded codon, thus demonstrating that the codon usage of highly expressed genes was selected in evolution to maintain the efficiency of global protein translation. codon usage evolution | tRNA | codon-to-tRNA balance | translation efficiency | genome engineering S ince there are 61 sense codons but only 20 amino acids, most amino acids are encoded by more than a single codon. However, synonymous codons for the same amino acid are not utilized to the same extent across different genes or genomes. This phenomenon, termed "codon usage bias," has been the subject of intense research and was shown to affect gene expression and cellular function through varied processes in bacteria, yeast, and mammals (1-4).Although differential codon usage can result from neutral processes of mutational biases and drift (5-7), certain codon choices could be specifically favored as they increase the efficiency (8-12) or accuracy (13-17) of protein synthesis. These forces would typically lead to codon biases in a gene because they locally exert their effect on the gene in which the codons reside. Indeed, there is a positive correlation between a gene's expression level and the degree of its codon bias (1). Various systems have demonstrated how altering the codon usage synonymously can alter the expression levels of the manipulated genes (18-21), an effect that could reach more than 1,000-fold (22).In addition to such cis effects, it is possible that codon usage also acts in trans, namely, that the codon choice of some genes would affect the translation of others due to a "shared economy" of the entire translation apparatus (23-25). Previous theoretical works have suggested that an increase in the elongation rate may reduce the number of ribosomes on mRNAs and therefore may indirectly increase the rate of initiation of other transcripts due to an increase in the pool of free ribosomes (6,26). In addition, a recent computational study in yeast has also examined the indirect effects of synonymous codon changes on the translation of the entire transcriptome (2...