2020
DOI: 10.37636/recit.v312334
|View full text |Cite
|
Sign up to set email alerts
|

Trombosis venosa profunda en extremidades inferiores: revisión de las técnicas de diagnóstico actuales y su simbiosis con el aprendizaje automático para un diagnóstico oportuno

Abstract: La Trombosis Venosa Profunda (TVP) es una manifestación de una Enfermedad Tromboembólica (ET). Cuando en una TVP los trombos venosos se desprenden y viajan a través del torrente sanguíneo pueden ocasionar una Trombo Embolia Pulmonar (TEP). La existencia de Trombosis Venosa Profunda (TVP) en las extremidades inferiores se ha descrito como uno de los principales factores de riesgo para el desarrollo de la TEP. Se considera que hasta el 90% de los émbolos pulmonares proceden de trombos venosos de las extremidades… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 45 publications
0
2
0
Order By: Relevance
“…For each ML model trained, the values of Accuracy, F1 Score, Precision, Recall, Specificity, and the area under the curve (AUC) are acquired and printed using sklearn metrics, the acquisition of Accuracy, Precision, Recall, and the ROC curve was accomplished in the case of the Multi-Layer Perceptron NN (MLP-NN), and the Accuracy (2), F1 score (3), Specificity (4), and Recall (5) values are calculated using the following equations taken from [24,61].…”
Section: Positive Dvt False Negative True Positivementioning
confidence: 99%
See 1 more Smart Citation
“…For each ML model trained, the values of Accuracy, F1 Score, Precision, Recall, Specificity, and the area under the curve (AUC) are acquired and printed using sklearn metrics, the acquisition of Accuracy, Precision, Recall, and the ROC curve was accomplished in the case of the Multi-Layer Perceptron NN (MLP-NN), and the Accuracy (2), F1 score (3), Specificity (4), and Recall (5) values are calculated using the following equations taken from [24,61].…”
Section: Positive Dvt False Negative True Positivementioning
confidence: 99%
“…In recent years, the field of data science has been pioneered in the development of hardware and software for the application of Artificial Neural Networks (ANNs) in clinical analysis, which can be useful for the diagnosis of DVT and other diseases in general, for example, the use of ML models such as Decision Trees, Support Vector Machine (SVM), and Neural Networks [24][25][26]. Nowadays, there are alternative methods of DVT diagnosis, some of which use AI.…”
Section: Introductionmentioning
confidence: 99%