Mass mortalities due to disease outbreaks have recently affected major taxa in the oceans. For closely monitored groups like corals and marine mammals, reports of the frequency of epidemics and the number of new diseases have increased recently. A dramatic global increase in the severity of coral bleaching in 1997-98 is coincident with high El Niño temperatures. Such climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases. Where documented, new diseases typically have emerged through host or range shifts of known pathogens. Both climate and human activities may have also accelerated global transport of species, bringing together pathogens and previously unexposed host populations. The oceans harbor enormous biodiversity by terrestrial terms (1), much of which is still poorly described taxonomically. Even less well known are the dynamics of intermittent, ephemeral, threshold phenomena such as disease outbreaks. Despite decades of intense study of the biological agents structuring natural communities, the ecological and evolutionary impact of diseases in the ocean remains unknown, even when these diseases affect economically and ecologically important species. The paucity of baseline and epidemiological information on normal disease levels in the ocean challenges our ability to assess the novelty of a recent spate of disease outbreaks and to determine the relative importance of increased pathogen transmission versus decreased host resistance in facilitating the outbreaks. Our objectives here are to review the prevalence of diseases of marine taxa to evaluate whether it can be concluded that there has been a recent increase. We also assess the contributing roles of human activity and global climate, and evaluate the role of the oceans as incubators and conveyors of human disease agents.