2024
DOI: 10.1007/s00220-024-05114-3
|View full text |Cite
|
Sign up to set email alerts
|

Tropical Refined Curve Counting with Descendants

Patrick Kennedy-Hunt,
Qaasim Shafi,
Ajith Urundolil Kumaran

Abstract: We prove a q-refined tropical correspondence theorem for higher genus descendant logarithmic Gromov–Witten invariants with a $$\lambda _g$$ λ g class in toric surfaces. Specifically, a generating series of such logarithmic Gromov–Witten invariants agrees with a q-refined count of rational tropical curves satisfying higher valency conditions. As a corollary, we obtain a geometric proof of the deformation invariance of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 45 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?