Around 2008 or 2009, an influenza A virus that had been circulating undetected in swine entered human population. Unlike most swine influenza infections of humans, this virus established sustained human-to-human transmission, leading to a global pandemic. The virus responsible, 2009 pandemic H1N1 (H1N1pdm), is the result of multiple reassortment events that brought together genomic segments from classical H1N1 swine influenza virus, human seasonal H3N2 influenza virus, North American avian influenza virus, and Eurasian avian-origin swine influenza viruses. Genetically, H1N1pdm possesses a number of unusual features, although the genomic characteristics that permitted sustained human-to-human transmission are yet unclear. Human infection with H1N1pdm has generally resulted in low mortality, although certain subgroups (including pregnant women, people with some chronic medical conditions, morbidly obese individuals, and immunosuppressed people) have significantly higher risk of severe disease. As H1N1pdm has spread throughout the human population it continued to evolve. It has also reentered the swine population as a circulating pathogen, and has been transiently identified in other species such as turkeys, cats, and domestic ferrets. Most genetic changes in H1N1pdm to date have not been clearly linked to changes in antigenicity, disease severity, antiviral drug resistance, or transmission efficiency. However, the rapid evolution rate characteristic of influenza viruses suggests that changes in antigenicity are inevitable in future years. Experience with this first pandemic of twenty-first century reemphasizes the importance of influenza surveillance in animals as well as humans, and offers lessons to develop and enhance our ability to identify potentially pandemic influenza viruses in the future.