Background: Panallergens are proteins that take part in key processes of organisms and, therefore, are ubiquitously distributed with highly conserved sequences and structures. One class of these panallergens is composed of the tropomyosins. The highly heat-stable tropomyosins
comprise the major allergens in crustaceans and mollusks, which make them important food allergens in exposed populations. Tropomyosins are responsible for a widespread immunoglobulin E cross-reactivity among allergens from different sources. Allergic tropomyosins are expressed in many species,
including parasites and insects. Methods: This panallergen class is divided, according to it capacity of induced allergic symptoms, into allergenic or nonallergenic tropomyosin. Although vertebrate tropomyosins share ∼55% of sequence homology with invertebrate tropomyosins,
it has been thought that the invertebrate tropomyosins would not have allergic properties. Nevertheless, in recent years, this opinion has been changed. In particular, tropomyosin has been recognized as a major allergen in many insects. Results: A high grade of homology
has been shown among tropomyosins from different species, such as crustaceans and insects, which supports the hypothesis of cross-reactivity among tropomyosins from divergent species. Moreover, the emerging habit of consuming edible insects has drawn the attention of allergists to invertebrate
tropomyosin protein due to its potential allergenic risk. Nevertheless, evidence about tropomyosin involvement in clinical allergic response is still scarce and deserves more investigation. Conclusion: This review intended to report allergic reactions associated with different
tropomyosins when considering house dust mites, parasites, seafood, and insects, and to summarize our current knowledge about its cross-reactivity because this could help physicians to accurately diagnose patients with food allergy.