Atrial fibrillation (AF), the most common human cardiac arrhythmia, is associated with abnormal intracellular Ca 2+ handling. Diastolic Ca 2+ release from the sarcoplasmic reticulum via "leaky" ryanodine receptors (RyR2s) is hypothesized to contribute to arrhythmogenesis in AF, but the molecular mechanisms are incompletely understood. Here, we have shown that mice with a genetic gain-of-function defect in Ryr2 (which we termed Ryr2 R176Q/+ mice) did not exhibit spontaneous AF but that rapid atrial pacing unmasked an increased vulnerability to AF in these mice compared with wild-type mice.