Increasing evidence during the past two decades shows that cells interconnect and communicate through cytonemes. These cytoskeleton-driven extensions of specialized membrane territories have emerged as a novel alternative for cell to cell communication that are involved in development, physiology, and disease. Several recent studies have shown that signalling pathways mediated by cytonemes during development, are essential for certain tumoral cell types progression.
In Drosophila wing disc EGFR and RET tumour models, cytoneme formation is required to receive signals from the neighbouring cells. Genetic ablation of cytonemes prevents tumour progression, restores apico-basal polarity, and improves survival.
Furthermore, cytonemes in the Drosophila glial cells are essential for glioblastoma progression as they alter Wg/Fz1 signalling between glia and neurons. Research on cytoneme formation, maintenance, and cell signalling mechanisms will help to better understand not only physiological developmental processes and tissue homeostasis but also cancer progression.