TP53 mutation occurs in 50-75% of human pancreatic ductal adenocarcinomas (PDAC) following an initiating activating mutation in the KRAS gene. These p53 mutations frequently result in expression of a stable protein, p53 R175H , rather than complete loss of protein expression. In this study we elucidate the functions of mutant p53 (Trp53 R172H ), compared to knockout p53 (Trp53 fl ), in a mouse model of PDAC. First we find that although Kras G12D is one of the major oncogenic drivers of PDAC, most Kras
G12D-expressing pancreatic cells are selectively lost from the tissue, and those that remain form premalignant lesions. Loss, or mutation, of Trp53 allows retention of the Kras G12D -expressing cells and drives rapid progression of these premalignant lesions to PDAC. This progression is consistent with failed growth arrest and/or senescence of premalignant lesions, since a mutant of p53, p53
R172P, which can still induce p21 and cell cycle arrest, is resistant to PDAC formation. Second, we find that despite similar kinetics of primary tumor formation, mutant p53 R172H , as compared with genetic loss of p53, specifically promotes metastasis. Moreover, only mutant p53 R172H -expressing tumor cells exhibit invasive activity in an in vitro assay. Importantly, in human PDAC, p53 accumulation significantly correlates with lymph node metastasis. In summary, by using 'knock-in' mutations of Trp53 we have identified two critical acquired functions of a stably expressed mutant form of p53 that drive PDAC; first, an escape from Kras G12D -induced senescence/ growth arrest and second, the promotion of metastasis.Kras | metastasis | p53 | pancreatic cancer | senescence P ancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer deaths in Europe and the United States, with an estimated 5-year overall survival of less than 5% (1, 2). Poor prognosis results from the aggressive nature of the disease, with as many as 90% of patients at the time of diagnosis harboring unresectable cancer that is extremely resistant to chemotherapy. PDAC arises from precursor lesions called pancreatic intraepithelial neoplasms (PanINs), which are characterized by the sequential accumulation of alterations in the KRAS oncogene and loss of the CDKN2A, TP53, and/or SMAD4 tumor suppressors in many cases (3). Although we know the frequencies of such mutations in PDAC, their specific functions during the development of pancreatic cancer remain unclear. Here we have used a genetically engineered mouse model of pancreatic cancer (4) to aid in understanding of the respective roles of gain-of-function Kras and Trp53 mutations.KRAS is mutated in almost all human PDACs (5), and this is one of the earliest genetic events driving development of human PanINs. Studies in murine models have further shown that activating KRAS mutation represents an initiating step in PDAC (6-9). The TP53 tumor suppressor gene is also frequently mutated in human pancreatic cancer (50-75%), predominantly through missense mutations (10). These often result in accumulati...