Receptor-operated Ca 2Ű entry (ROCE) and store-operated Ca 2Ű entry (SOCE) into cells are functions performed by all higher eukaryotic cells, and their impairment is life-threatening. The main molecular components of this pathway appear to be known. However, the molecular make-up of channels mediating ROCE and SOCE is largely unknown. One hypothesis proposes SOCE channels to be formed solely by Orai proteins. Another proposes SOCE channels to be composed of both Orai and C-type transient receptor potential (TRPC) proteins. Both hypotheses propose that the channels are activated by STIM1, a sensor of the filling state of the Ca 2Ű stores that activates Ca 2Ű entry when stores are depleted. The role of Orai in SOCE has been proven. Here we show the TRPC-dependent reconstitution of Icrac, the electrophysiological correlate to SOCE, by expression of Orai1; we also show that R91W-Orai1 can inhibit SOCE and ROCE and that Orai1 and STIM1 expression leads to functional expression of Gd-resistant ROCE. Because channels that mediate ROCE are accepted to be formed with the participation of TRPCs, our data show functional interaction between ROCE and SOCE components. We propose that SOCE/Icrac channels are composed of heteromeric complexes that include TRPCs and Orai proteins.capacitative calcium entry Í signal transduction Í store depletion R eported independently by three laboratories at the beginning of 2006, Orai (also known as CRACM) proteins, especially Orai1, have emerged as the molecular candidates for the underlying structure of store-operated Ca 2Ï© entry (SOCE) channels responsible for the store-depletion activated Ca 2Ï© current, Icrac, without apparent role(s) for transient receptor potential ion channels (TRPCs) (reviewed in refs. 1-3). Before the discovery of Orai genes and their gene products, the only candidates presumed to underlie SOCE had been the members of the TRPC class of ion channels, of which there are seven. This proposition was based on primary research reports from many laboratories showing that expression of the cloned TRPCs enhances store-depletion activated Ca 2Ï© entry (cf. table 1.3 in ref. 4) and/or that injection of specific anti-TRPC antibodies or genetic ablation of TRPC genes reduces SOCE and/or Icrac. Moreover, Zagranichnaya et al. (5) showed partial reduction of SOCE in response to siRNAs that targeted TRPC1, TRPC3, or TRPC7, which, when combined, were partially additive. The idea promoted in the reviews listed above that channels responsible for SOCE and Icrac form without involvement of TRPC proteins is especially difficult to reconcile with the total loss of Icrac in vascular endothelial cells seen in TRPC4 knock-out mice (6) and the 80% loss of SOCE found in submaxillary acinar cells of TRPC1 knockout mice (7).Based on the foregoing data, and recognizing that Orai/ CRACMs are part of SOCE/Icrac channels, we proposed that SOCE/Icrac channels may be heteromeric complexes of TRPC and Orai proteins (8). If this were the case, we reasoned, expression of Orai1 in cells expressing excess ...