“…Direct application of Aβ can disrupt spontaneous oscillatory network activity in vitro (Adaya‐Villanueva, Ordaz, Balleza‐Tapia, Márquez‐Ramos, & Peña‐Ortega, ; Balleza‐Tapia, Huanosta‐Gutiérrez, Márquez‐Ramos, Arias, & Peña, ; Gutiérrez‐Lerma, Ordaz, & Peña‐Ortega, ; Peña et al, ; Peña‐Ortega, Solis‐Cisneros, Ordaz, Balleza‐Tapia, & Javier, ) and in vivo (Colom et al, ; Cornejo‐Montes‐de‐Oca, Hernández‐Soto, Isla, Morado‐Urbina, & Peña‐Ortega, ; Peña‐Ortega & Bernal‐Pedraza, ; Villette et al, ). The cellular mechanisms involved in Aβ‐induced disruption of neural network activity comprise changes in synaptic transmission (Balleza‐Tapia et al, ; Mura et al, ; Peña et al, ; Salamone et al, ; Satoh et al, ) and in intrinsic neuronal properties (Chen, ; Hou, Cui, Yu, & Zhang, ; Mondragón‐Rodríguez, Gu, et al, ; Peña et al, ; Rovira, Arbez, & Mariani, ; Shankar & Walsh, ; Ye, Selkoe, & Hartley, ), which involve direct actions of Aβ on ion channels (Balleza‐Tapia et al, ; Chen, ; Hou et al, ; Rovira et al, ; Shankar & Walsh, ; Ye et al, ) and/or their modulation through the activation of intracellular transduction pathways (Ekinci, Malik, & Shea, ; Wildburger & Laezza, ; Zhu et al, ). At the synaptic level, Aβ produces alterations at both presynaptic (Balleza‐Tapia et al, ; Cuevas et al, ; Dougherty, Wu, & Nichols, ; Nimmrich & Ebert, ; Peña et al, ; Ting, Kelley, Lambert, Cook, & Sullivan, ) and postsynaptic levels (Dinamarca, Ríos, & Inestrosa, ; Gylys et al, ; Harigaya, Shoji, Shirao, & Hirai, ; Hatanpaa, Isaacs, Shirao, Brady, & Rapoport, ; Ting et al, ).…”