Image restoration aims to restore an image within a given domain from a blurred and noisy acquisition. However, the convolution operator, which models the degradation, is truncated in a real observation causing significant artifacts in the restored results. Typically, some assumptions are made about the boundary conditions (BCs) outside the field of view to reduce the ringing. We propose instead a restoration method without prior conditions which reconstructs the boundary region as well as making the ringing artifact negligible. The algorithm of this article is based on a multilayer perceptron (MLP) which minimizes a truncated version of the total variation regularizer using a back-propagation strategy. Various experiments demonstrate the novelty of the MLP in the boundary restoration process without neither any image information nor prior assumption on the BCs.