The use of Artificial Intelligence and Big Data in health care opens up new opportunities for the measurement of the human. Their application aims not only at gathering more and better data points but also at doing it less invasive. With this change in health care towards its extension to almost all areas of life and its increasing invisibility and opacity, new questions of transparency arise. While the complex human-machine interactions involved in deploying and using AI tend to become non-transparent, the use of these technologies makes the patient seemingly transparent. Papers on the ethical implementation of AI plead for transparency but neglect the factor of the “transparent patient” as intertwined with AI. Transparency in this regard appears to be Janus-faced: The precondition for receiving help - e.g., treatment advice regarding the own health - is to become transparent for the digitized health care system. That is, for instance, to donate data and become visible to the AI and its operators. The paper reflects on this entanglement of transparent patients and (non-) transparent technology. It argues that transparency regarding both AI and humans is not an ethical principle per se but an infraethical concept. Further, it is no sufficient basis for avoiding harm and human dignity violations. Rather, transparency must be enriched by intelligibility following Judith Butler’s use of the term. Intelligibility is understood as an epistemological presupposition for recognition and the ensuing humane treatment. Finally, the paper highlights ways to testify intelligibility in dealing with AI in health care ex ante, ex post, and continuously.