Weight illusions provide a compelling demonstration that prior experience affects perception. Here we investigated how the expectation-inducing modality affected the Material-Weight Illusion (MWI), where dense-looking objects feel lighter than less dense-looking objects. Participants lifted equally-weighted polystyrene, cork, and granite cubes whilst viewing computer-generated images of the cubes in virtual reality (VR). The representation of the object in VR was manipulated to create four illusion-inducing sensory conditions: visual differences only, haptic differences only, congruent visual-haptic differences, and incongruent visual-haptic material differences. Although an MWI was induced in all conditions, whereby the polystyrene object was reported to feel heavier than the granite object, the strength of the MWI differed across conditions, with haptic material cues having a stronger influence on perceived heaviness than visual material cues. These results are consistent with optimal integration theories of multi-modal perception, highlighting that perception reflects individual cues’ reliability and relevance in specific contexts.