In this paper, a new form-finding analysis methodology for a class 2 tensegrity robot is proposed. The methodology consists of two steps: first, the analysis of the possible geometric configurations of the robot is carried out through the results of the kinematic position analysis; and, second, from the static analysis, the equilibrium positions of the robot are found, which represents its workspace. Both kinematics and static analysis are resolved in a closed-form using basic tools of linear algebra instead of the strategies used in literature. Four numerical experiments are presented using the finite element analysis software ANSYS c . Additionally, a comparison between the results of the form-finding analysis methodology proposed and the ANSYS c results is presented.