Natural compounds have shown good potential for the discovery of new chemotherapeutics for the treatment of Chagas’ disease. Recently, our group reported the effective trypanocidal activity of (−)-elatol, extracted from the red macroalgae Laurencia dendroidea present in the Brazilian coast against Trypanosoma cruzi. However, the mechanism of action of this compound has remained unclear. There are only hypotheses concerning its action on mitochondrial function. Here, we further investigated the mechanisms of action of (−)-elatol on trypomastigotes of T. cruzi. For this, we evaluated some biochemical alterations in trypomastigotes treated with (−)-elatol. Our results show that (−)-elatol induced depolarization of the mitochondrial membrane, an increase in the formation of mitochondrial superoxide anion and loss of cell membrane and DNA integrity. Additionally, (−)-elatol induced formation of autophagic vacuoles and a decrease in cell volume. All together, these results suggest that the trypanocidal action of (−)-elatol involves multiple events and mitochondria might be the initial target organelle. Our hypothesis is that the mitochondrial dysfunction leads to an increase of ROS production through the electron transport chain, which affects cell membrane and DNA integrity leading to different types of parasite death.