Licochalcone A (LA), a chalcone derived from liquorice, exhibits multiple biological activities, including anti-oxidation and anti-inflammation. This study aimed to investigate the role and underlying mechanism of LA in the abdominal aortic aneurysm (AAA). AAA model was established by continuous infusion of 1000 ng/kg/min of angiotensin II (AngII) in ApoE -/mice for 4 weeks. At 7 days before AngII administration, 5 mg/kg/day or 10 mg/kg/day of LA was intraperitoneally administered to mice and continued for 4 weeks. The characteristics and quantification of AAAs were determined in situ. Real-time PCR or western blot was used to measure mRNA or protein levels of matrix metalloproteinase 2 and matrix metalloproteinase 9; pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6; apoptosis-related proteins Bax, Bcl-2, and active caspase-3; miR-181b; Sirtuin 1 (SIRT1); and heme oxygenase-1 (HO-1). Mouse-aorta-origin vascular smooth muscle (MOVAS) cells were used to confirm the involved pathways in vitro. We found LA administration dose-dependently reduced the incidence of AngII-induced AAA, aneurysm diameter enlargement, elastin degradation, matrix metalloproteinase production, pro-inflammatory cytokines and miR-181b expression, and vascular smooth muscle cell apoptosis. It elevated SIRT1 and HO-1 expression that was suppressed by AngII.AngII enhanced miR-181b but reduced SIRT1 and HO-1 expression in MOVAS cells. In AngII-stimulated MOVAS cells, downregulation of miR-181b significantly upregulated the expression of SIRT1 and HO-1, the effect of which was abrogated by SIRT1 siRNA.Collectively, LA could attenuate AngII-induced AAA by modulating the miR-181b/ SIRT1/HO-1 signaling. LA might be a potential medical therapy for small AAA. K E Y W O R D S abdominal aortic aneurysm (AAA), angiotensin II, licochalcone A (LA), miR-181b, SIRT1/HO-1