Human embryonic stem cells (hESCs) closely resemble mouse epiblast stem cells exhibiting primed pluripotency unlike mouse ESCs (mESCs), which acquire a na€ ıve pluripotent state. Efforts have been made to trigger na€ ıve pluripotency in hESCs for subsequent unbiased lineage-specific differentiation, a common conundrum faced by primed pluripotent hESCs due to heterogeneity in gene expression existing within and between hESC lines. This required either ectopic expression of na€ ıve genes such as NANOG and KLF2 or inclusion of multiple pluripotency-associated factors. We report here a novel combination of small molecules and growth factors in culture medium (2i/LIF/basic fibroblast growth factor 1 Ascorbic Acid 1 Forskolin) facilitating rapid induction of transgene-free na€ ıve pluripotency in hESCs, as well as in mESCs, which has not been shown earlier. The converted na€ ıve hESCs survived long-term single-cell passaging, maintained a normal karyotype, upregulated na€ ıve pluripotency genes, and exhibited dependence on signaling pathways similar to na€ ıve mESCs. Moreover, they undergo global DNA demethylation and show a distinctive long noncoding RNA profile. We propose that in our medium, the FGF signaling pathway via PI3K/AKT/mTORC induced the conversion of primed hESCs toward na€ ıve pluripotency. Collectively, we demonstrate an alternate route to capture na€ ıve pluripotency in hESCs that is fast, reproducible, supports na€ ıve mESC derivation, and allows efficient differentiation. STEM CELLS 2015;33:2686-2698
SIGNIFICANCE STATEMENTNa€ ıve pluripotency, commonly displayed by mouse embryonic stem cells (ESCs), holds several advantages over stem cells exhibiting a primed pluripotent state such as human ESCs, which already show a bias towards certain lineages. We report the formulation of a novel culture condition with minimal components facilitating rapid, robust and efficient induction of na€ ıve pluripotency in primed human ESCs. These novel na€ ıve human ESCs were karyotypically normal, underwent efficient single cell passaging, exhibited a unique epigenetic and lncRNA profile and unbiased lineage-specific differentiation similar to mouse ESCs. This na€ ıve state of pluripotency is important for possible future regenerative cell applications including efficient genome engineering and targeted gene correction.