Current deficiency in our understanding of acute-to-chronic pain transition remains a hurdle for developing effective treatments against chronic pain. Whereas neurocentric mechanisms alone are insufficient to provide satisfactory explanation for such transition, neuro-immune crosstalk has attracted attention in recent pain research. In contrast to brain microglia, spinal microglia are activated immediately in various pain states. The fast-responsive enrichment and activation of spinal microglia among different pain conditions have highlighted the crucial role of neuroinflammation caused by microglia-neuron crosstalk in pain initiation. Recent studies have revealed spinal microglia-neuron interactions are also involved in chronic pain maintenance, albeit, with different anatomic distribution, cellular and molecular mechanisms, and biologic functions. Delineating the exact temporal discrepancies of spinal microglia distribution and functions along acute-to-chronic pain transition may provide additional mechanistic insights for drug development to prevent deterioration of acute pain into the chronic state. This narrative review summerizes the longitudinal alterations of spinal microglia-neuron interactions in the initiation of pain hypersensitivity, acuteto-chronic pain progression, and chronic pain maintenance, followed by an overview of current clinical translation of preclinical studies on spinal microglia. This review highlights the crucial role of the interaction between spinal microglia and neighboring neurons in the initiation and maintenance of pain hypersensitivity, in relation to the release of cytokines, chemokines, and neuroactive substances, as well as the modulation of synaptic plasticity. Further exploration of the uncharted functions of spinal microglia-neuron crosstalk may lead to the design of novel drugs for preventing acute-to-chronic pain transition.