2016
DOI: 10.5194/nhess-16-2603-2016
|View full text |Cite
|
Sign up to set email alerts
|

Tsunami arrival time detection system applicable to discontinuous time series data with outliers

Abstract: Abstract. Timely detection of tsunamis with water level records is a critical but logistically challenging task because of outliers and gaps. Since tsunami detection algorithms require several hours of past data, outliers could cause false alarms, and gaps can stop the tsunami detection algorithm even after the recording is restarted. In order to avoid such false alarms and time delays, we propose the Tsunami Arrival time Detection System (TADS), which can be applied to discontinuous time series data with outl… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
2
0
11

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(13 citation statements)
references
References 28 publications
0
2
0
11
Order By: Relevance
“…Secara umum, algoritme pendeteksi tsunami yang dikembangkan oleh Lee dan Park [11] tersebut terdiri dari tiga sub algoritme, yaitu eliminasi spike, pengisian data kosong, dan pendeteksian tsunami. Pada tahapan pertama, dilakukan eliminasi spike yang merupakan data pencilan atau data simpangan akibat faktor elektronik peralatan atau faktor meteorologi [12]. Data ini perlu dieliminasi agar tidak mengganggu proses deteksi dengan menerapkan algoritme modifikasi metode Tukey 53H dari Goring dan Nikora [13].…”
Section: A Algoritme Deteksi Tsunamiunclassified
See 3 more Smart Citations
“…Secara umum, algoritme pendeteksi tsunami yang dikembangkan oleh Lee dan Park [11] tersebut terdiri dari tiga sub algoritme, yaitu eliminasi spike, pengisian data kosong, dan pendeteksian tsunami. Pada tahapan pertama, dilakukan eliminasi spike yang merupakan data pencilan atau data simpangan akibat faktor elektronik peralatan atau faktor meteorologi [12]. Data ini perlu dieliminasi agar tidak mengganggu proses deteksi dengan menerapkan algoritme modifikasi metode Tukey 53H dari Goring dan Nikora [13].…”
Section: A Algoritme Deteksi Tsunamiunclassified
“…Setelah ditemukan pola yang mirip, data tinggi muka air laut di waktu lampau tersebut digunakan untuk mengisi data kosong [14]. Meskipun memiliki pola yang mirip, data di waktu lampau tersebut tidak bisa langsung digunakan untuk mengisi rentang data kosong karena ada perbedaan nilai tinggi muka air laut sehingga perlu disesuaikan agar data deret waktu berlanjut secara kontinyu menggunakan end-point fixing method (EPFM) [11], [12], [14].…”
Section: A Algoritme Deteksi Tsunamiunclassified
See 2 more Smart Citations
“…또한 일본 서해안에 위치한 지진대는 지진 및 지진해일 발 생 가능성이 높은 Potential tsunami zone으로 연구자들에 의 해 위험성이 대두되는 실정이다 (Mulia et al, 2020). 따라서 한국 기상청은 지진해일 관측장비인 울릉도 해일파고계의 지진해일 탐지 알고리즘 (Lee et al, 2016), 지진해일 시나리 오 DB 정확도 향상 (Sohn et al, 2018), 그리고 조기 경보 목적 으로 외해 지진해일 관측장비의 최적 배치 지역 (Lee et al, 2019) 등 지진해일의 피해를 저감하기 위하여 지진해일 예⋅ 경보 시스템에 관한 연구를 활발히 수행 중이다.…”
unclassified