Abstract:We present SDDP.jl, an open-source library for solving multistage stochastic programming problems using the stochastic dual dynamic programming algorithm. SDDP.jl is built on JuMP, an algebraic modeling language in Julia. JuMP provides SDDP.jl with a solver-agnostic, user-friendly interface. In addition, we leverage unique features of Julia, such as multiple dispatch, to provide an extensible framework for practitioners to build on our work. SDDP.jl is well tested, and accessible documentation is available at … Show more
“…Nesta seção descreveremos os resultados da simulação do modelo descrito no Capítulo 3 e as premissas descritas na seção 4.1. Para a resolução e simulação dos modelos PDDE utilizamos o Framework desenvolvido por Dowson e Kapelevich [45] para a linguagem de programação Julia. O solver utilizado foi o Gurobi, versão 7.5.2.…”
Section: Resultsunclassified
“…O problema do caso base para λ = 0.5 foi resolvido em 187 segundos utilizando um MacBook Pro com processador Intel Core i7 de 2.7 Ghz e 16 GB de memória. O modelo foi simulado em 50 estágios nas instâncias padrão do Framework desenvolvido por Dowson e Kapelevich [45].…”
Waga, Mateus Cavalcante; Valladão, Davi Michel (Advisor); da Silva, Thuener Armando (Co-Advisor). Risk aversion and optimal investment and financing corporate policy: a stochastic dynamic programming approach. Rio de Janeiro, 2018. 65p.
“…Nesta seção descreveremos os resultados da simulação do modelo descrito no Capítulo 3 e as premissas descritas na seção 4.1. Para a resolução e simulação dos modelos PDDE utilizamos o Framework desenvolvido por Dowson e Kapelevich [45] para a linguagem de programação Julia. O solver utilizado foi o Gurobi, versão 7.5.2.…”
Section: Resultsunclassified
“…O problema do caso base para λ = 0.5 foi resolvido em 187 segundos utilizando um MacBook Pro com processador Intel Core i7 de 2.7 Ghz e 16 GB de memória. O modelo foi simulado em 50 estágios nas instâncias padrão do Framework desenvolvido por Dowson e Kapelevich [45].…”
Waga, Mateus Cavalcante; Valladão, Davi Michel (Advisor); da Silva, Thuener Armando (Co-Advisor). Risk aversion and optimal investment and financing corporate policy: a stochastic dynamic programming approach. Rio de Janeiro, 2018. 65p.
“…To develop a tool that can be used by both researchers and industry professionals, we take advantage of the Julia language [15] and two main packages: PowerModels.jl [16], which implements power flow models for electrical dispatch, SDDP.jl [18], which implements the stochastic dual dynamic programming algorithm. Both PowerModels.jl and SDDP.jl handle their respective inconsistent policy, derived as a more realistic chained planning-and-implementation process (as per Algorithm 2 or approximation schemes such as Algorithm 3) offers more accurate estimates for future decisions than the related planning policy.…”
Section: Assessing the Time Inconsistency Gapmentioning
confidence: 99%
“…More implementations of SDDP are also available in Julia [49] [50], but SDDP.jl [18] has proven an easy to learn, efficient version of SDDP that is flexible enough for the purposes of the HydroPowerModels.jl package. -Build the multistage, hydrothermal steady-state power network optimization problem.…”
Section: Assessing the Time Inconsistency Gapmentioning
confidence: 99%
“…This tool enables not only the assessment of the results found in this work but also allows researchers in the electrical industry to test new ideas, leveraging state-of-the-art solution methods and mathematical formulations for the economic dispatch problem. It combines two other opensource packages developed in Julia Language [15], namely, PowerModels.jl, developed by Coffrin [16,17] to solve steady-state power network optimization problems, and SDDP.jl, developed by Oscar Dowson [18,19] to solve multistage convex stochastic optimization problems. This combination puts together two state-of-the-art open-source packages sharing the same layer for modeling mathematical optimization in Julia called JuMP.jl [20].…”
for the excellent lectures and talks throughout this program. I'd like to thank my girlfriend Natália Lamas and her family for all their love and affection in the past years. Natália has taught me to be patient and to have a balanced life, without which I wouldn't have achieved my goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.