2021
DOI: 10.1287/ijoc.2020.0987
|View full text |Cite
|
Sign up to set email alerts
|

SDDP.jl: A Julia Package for Stochastic Dual Dynamic Programming

Abstract: We present SDDP.jl, an open-source library for solving multistage stochastic programming problems using the stochastic dual dynamic programming algorithm. SDDP.jl is built on JuMP, an algebraic modeling language in Julia. JuMP provides SDDP.jl with a solver-agnostic, user-friendly interface. In addition, we leverage unique features of Julia, such as multiple dispatch, to provide an extensible framework for practitioners to build on our work. SDDP.jl is well tested, and accessible documentation is available at … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
52
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
2
2

Relationship

0
7

Authors

Journals

citations
Cited by 67 publications
(54 citation statements)
references
References 21 publications
0
52
0
2
Order By: Relevance
“…Nesta seção descreveremos os resultados da simulação do modelo descrito no Capítulo 3 e as premissas descritas na seção 4.1. Para a resolução e simulação dos modelos PDDE utilizamos o Framework desenvolvido por Dowson e Kapelevich [45] para a linguagem de programação Julia. O solver utilizado foi o Gurobi, versão 7.5.2.…”
Section: Resultsunclassified
See 1 more Smart Citation
“…Nesta seção descreveremos os resultados da simulação do modelo descrito no Capítulo 3 e as premissas descritas na seção 4.1. Para a resolução e simulação dos modelos PDDE utilizamos o Framework desenvolvido por Dowson e Kapelevich [45] para a linguagem de programação Julia. O solver utilizado foi o Gurobi, versão 7.5.2.…”
Section: Resultsunclassified
“…O problema do caso base para λ = 0.5 foi resolvido em 187 segundos utilizando um MacBook Pro com processador Intel Core i7 de 2.7 Ghz e 16 GB de memória. O modelo foi simulado em 50 estágios nas instâncias padrão do Framework desenvolvido por Dowson e Kapelevich [45].…”
Section: Resultsunclassified
“…To develop a tool that can be used by both researchers and industry professionals, we take advantage of the Julia language [15] and two main packages: PowerModels.jl [16], which implements power flow models for electrical dispatch, SDDP.jl [18], which implements the stochastic dual dynamic programming algorithm. Both PowerModels.jl and SDDP.jl handle their respective inconsistent policy, derived as a more realistic chained planning-and-implementation process (as per Algorithm 2 or approximation schemes such as Algorithm 3) offers more accurate estimates for future decisions than the related planning policy.…”
Section: Assessing the Time Inconsistency Gapmentioning
confidence: 99%
“…More implementations of SDDP are also available in Julia [49] [50], but SDDP.jl [18] has proven an easy to learn, efficient version of SDDP that is flexible enough for the purposes of the HydroPowerModels.jl package. -Build the multistage, hydrothermal steady-state power network optimization problem.…”
Section: Assessing the Time Inconsistency Gapmentioning
confidence: 99%
See 1 more Smart Citation